Validation of Time-distance Helioseismology by Use of Realistic Simulations of Solar Convection
نویسندگان
چکیده
Recent progress in realistic simulations of solar convection have given us an unprecedented opportunity to evaluate the robustness of solar interior structures and dynamics obtained by methods of local helioseismology. We present results of testing the time-distance method using realistic simulations. By computing acoustic wave propagation time and distance relations for different depths of the simulated data, we confirm that acoustic waves propagate into the interior and then turn back to the photosphere. This demonstrates that in numerical simulations properties of acoustic waves ( p-modes) are similar to the solar conditions, and that these properties can be analyzed by the timedistance technique. For surface gravity waves ( f-modes), we calculate perturbations of their travel times caused by localized downdrafts and demonstrate that the spatial pattern of these perturbations (representing so-called sensitivity kernels) is similar to the patterns obtained from the real Sun, displaying characteristic hyperbolic structures. We then test time-distance measurements and inversions by calculating acoustic travel times from a sequence of vertical velocities at the photosphere of the simulated data and inferring mean three-dimensional flow fields by performing inversion based on the ray approximation. The inverted horizontal flow fields agree very well with the simulated data in subsurface areas up to 3 Mm deep, but differ in deeper areas. Due to the cross talk effects between the horizontal divergence and downward flows, the inverted vertical velocities are significantly different from the mean convection velocities of the simulation data set. These initial tests provide important validation of time-distance helioseismology measurements of supergranular-scale convection, illustrate limitations of this technique, and provide guidance for future improvements. Subject headinggs: convection — Sun: helioseismology — Sun: oscillations
منابع مشابه
Local helioseismology and correlation tracking analysis of surface structures in realistic simulations of solar convection
We apply time-distance helioseismology, local correlation tracking and Fourier spatial-temporal filtering methods to realistic supergranule scale simulations of solar convection and compare the results with high-resolution observations from the SOHO Michelson Doppler Imager (MDI). Our objective is to investigate the surface and sub-surface convective structures and test helioseismic measurement...
متن کاملImaging the Solar Tachocline by Time-Distance Helioseismology
The solar tachocline at the bottom of the convection zone is an important region for the dynamics of the Sun and the solar dynamo. In this region, the sound speed inferred by global helioseismology exhibits a bump of approximately 0.4% relative to the standard solar model. Global helioseismology does not provide any information on possible latitudinal variations or asymmetries between the North...
متن کاملHelioseismology challenges models of solar convection.
C onvection is the mechanism by which energy is transported through the outermost 30% of the sun (1). Solar turbulent convection is notoriously difficult to model across the entire convection zone, where the density spans many orders of magnitude. In PNAS, Hanasoge et al. (2) use recent helioseismic observations to derive stringent empirical constraints on the amplitude of large-scale convectiv...
متن کاملHelioseismic Data Assimilation in Solar Dynamo Models
An essential ingredient in kinematic dynamo models of the solar cycle is the internal velocity field within the simulation domain – the solar convection zone. In the last decade or so, the field of helioseismology has revolutionized our understanding of this velocity field. In particular, the internal differential rotation of the Sun is now fairly well constrained by helioseismic observations a...
متن کاملTheoretical Modeling of Propagation of Magneto-acoustic Waves in Magnetic Regions below Sunspots
We use 2D numerical simulations and eikonal approximation, to study properties of MHD waves traveling below the solar surface through the magnetic structure of sunspots. We consider a series of magnetostatic models of sunspots of different magnetic field strengths, from 10 Mm below the photosphere to the low chromosphere. The purpose of these studies is to quantify the effect of the magnetic fi...
متن کامل